当前位置: > 数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=n+2/nSn(n=1,2,3.),证明(1)数列{Sn/n}是等比数列.(2)S(n+1)=4an...
题目
数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=n+2/nSn(n=1,2,3.),证明(1)数列{Sn/n}是等比数列.(2)S(n+1)=4an

提问时间:2020-06-25

答案
证明: (1) 注意到:a(n+1)=S(n+1)-S(n) 代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2 又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.