当前位置: > 已知函数fx=x^2+alnx的图像在点p(1,f1)处的切线斜率为10,判断方程fx=2x根的个数,证明你的结论...
题目
已知函数fx=x^2+alnx的图像在点p(1,f1)处的切线斜率为10,判断方程fx=2x根的个数,证明你的结论

提问时间:2020-06-24

答案
f(x)=x^2+alnxf(x)'=2x+a/xf(1)'=2*1+a/1=2+a=10a=8f(x)=x^2+8lnxf(x)=2xx^2+8lnx-2x=0设:y=x^2+8lnx-2x x>0y'=x+8/x-2>=2根号(x*8/x)-2=4根号2-2>0所以y=x^2+8lnx-2x在定义域x>0内是增函数.它与x轴最多只能有一个...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.