题目
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数.(1)求a的值.(2)证明f(x)在(0,+∞)上的单调性
提问时间:2020-06-23
答案
1、f(x)=e^x/a+a/e^x是R上的偶函数,所以对于任意x,都有f(-x)=f(x)
所以f(-1)=f(1)
即(e^-1)/a+a/e=e/a+a/(e^-1)
通过移项得,e/a-(e^-1)/a=a/(e^-1)-a/e
解得a=1或-1
因为a>0
所以a=12、a=1
f(x)=e^x+1/e^x
x1,x2∈(0,+∞),x1<x2
f(x1)-f(x2)=e^x1+1/e^x1-(e^x2+1/e^x2)=e^x1-e^x2+1/e^x1-1/e^x2=(e^x1-e^x2)(e^x1e^x2-1)/e^x1e^x2
x1,x2∈(0,+∞),所以e^x1e^x2-1>0,e^x1-e^x2<0
所以(e^x1-e^x2)(e^x1e^x2-1)/e^x1e^x2<0
所以f(x1)<f(x2)
所以f(x)在(0,+∞)上是增函数
所以f(-1)=f(1)
即(e^-1)/a+a/e=e/a+a/(e^-1)
通过移项得,e/a-(e^-1)/a=a/(e^-1)-a/e
解得a=1或-1
因为a>0
所以a=12、a=1
f(x)=e^x+1/e^x
x1,x2∈(0,+∞),x1<x2
f(x1)-f(x2)=e^x1+1/e^x1-(e^x2+1/e^x2)=e^x1-e^x2+1/e^x1-1/e^x2=(e^x1-e^x2)(e^x1e^x2-1)/e^x1e^x2
x1,x2∈(0,+∞),所以e^x1e^x2-1>0,e^x1-e^x2<0
所以(e^x1-e^x2)(e^x1e^x2-1)/e^x1e^x2<0
所以f(x1)<f(x2)
所以f(x)在(0,+∞)上是增函数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1how does john feel when the ball hits his head?这句话不是does后面加动词原形吗?那为什么是hits
- 2汉译英,环保、节能减排方面
- 3把“如果一片树叶代表我对你的一份思念,那么,在我的心里,地球将布满森林.”翻译成英语
- 4弹簧两端受力不等,伸长量怎么计算
- 5x^2/9+y^2/5=1,焦点是F1,F2.在直线L:x+y-6=0上找一个点M,求以F1,F2为焦点且通过M且长轴最短的椭圆方程
- 6实验室用加热高锰酸钾的方法制取发生反应的化学方程式?
- 7南南放学后步行回家,学校和家的距离是2000米,她每分走50米,她出发5分钟后妈妈从家骑车去接她,
- 8为什么有时太阳没下山月亮就出来了 被女儿问到了求助
- 9五份之几=几除以十五=几分之十=0.4=8除以几 对的给十分
- 10两个因数相乘的积是三位小数,则两个因数的小数位数之和一定是三位小数.
热门考点