当前位置: > 已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤1/2时,f(x)=x-x²...
题目
已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤1/2时,f(x)=x-x²
1.求职f(x)是周期为2的函数 2.求函数f(x)在区间[1,2]上的解析式 3.求f(x)的值域

提问时间:2020-06-20

答案
答:
(1)f(x)=f(1-x)=-f(-x)=-f[1-(-x)]=-f(1+x)=f[-(1+x)]=f(-1-x)=f(1-x-2)
所以:f(x)=f(x-2)
所以:f(x)是周期为2的函数.
(2)0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.