当前位置: > 已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3). (1)求实数k的值,并写出相应的函数f(x)的解析式; (2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(...
题目
已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x,在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.

提问时间:2020-06-19

答案
(1)对于幂函数f(x)=x(2-k)(1+k)满足f(2)<f(3),
因此(2-k)(1+k)>0,
解得-1<k<2,
因为k∈Z,
所以k=0,或k=1,
当k=0时,f(x)=x2
当k=1时,f(x)=x2
综上所述,k的值为0或1,f(x)=x2
(2)函数g(x)=1-mf(x)+(2m-1)x
=-mx2+(2m-1)x+1,
因为要求m>0,因此抛物线开口向下,
对称轴x=
2m−1
2m

当m>0时,
2m−1
2m
=1-
1
2m
<1,
因为在区间[0,1]上的最大值为5,
所以
1−
1
2m
>0
g(1−
1
2m
)=5
1−
1
2m
≤0
g(0)=5

解得m=
5
2
+
6
满足题意.
(1)对于幂函数f(x)=x(2-k)(1+k)满足f(2)<f(3),代入结合k∈Z可求k的值
(2)由(1)可得函数g(x)=1-mf(x)+(2m-1)x=-mx2+(2m-1)x+1,由m>0,因此抛物线开口向上,对称轴x=
2m−1
2m
<1,若函数在区间[0,1]上的最大值为5,
1−
1
2m
>0
g(1−
1
2m
)=5
1−
1
2m
≤0
g(0)=5
解方程可求m

指数函数综合题.

本题主要考查了幂函数的定义的应用,二次函数在闭区间上的最值的求解,注意分类讨论思想在解题中的应用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.