当前位置: > 设f(x)=(x-a)φ (x),其中函数φ (x)在x=a处连续,证明f(x)在x=a处可导,并求其导数...
题目
设f(x)=(x-a)φ (x),其中函数φ (x)在x=a处连续,证明f(x)在x=a处可导,并求其导数

提问时间:2020-06-19

答案
f'(a⁻)=lim[x→a⁻][f(x)-f(a)]/(x-a)=lim[x→a⁻](x-a)φ(x)/(x-a)=lim[x→a⁻]φ(x)=φ(a)
f'(a⁺)=lim[x→a⁺][f(x)-f(a)]/(x-a)=lim[x→a⁺](x-a)φ(x)/(x-a)=lim[x→a⁺]φ(x)=φ(a)
f'(a⁻)=f'(a⁺)=φ(a),左右导数相等,所以f(x)在x=a处可导,且f'(a)=φ(a)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.