当前位置: > 已知xyz=1,求x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)的值...
题目
已知xyz=1,求x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)的值
要理由

提问时间:2020-06-19

答案
xyz=1
所以
z=1/xy
xz=1/y
yz=1/x
x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)
=x/(xy+x+1)+y/(1/x+y+1)+(1/xy)/(1/y+1/xy+1)
第二个分子分母同乘以x
第三个分子分母同乘以xy
=x/(xy+x+1)+xy/(xy+x+1)+1/(xy+x+1)
=(xy+x+1)/(xy+x+1)
=1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.