当前位置: > 对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a....
题目
对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.
2k-1 和 2k 都是数列的下标,也就是这个数列的奇数列的极限是a,偶数列的极限是a,证明原数列的极限是a.

提问时间:2020-06-18

答案
用极限的定义证明:
对任意ε>0,存在K1∈N使得k>K1时总有│x(2k-1)-a│<ε
对任意ε>0,存在K2∈N使得k>K2时总有│x(2k)-a│<ε
取N=max{2K1-,2K2},于是对任意ε>0,存在自然数N使得n>N时总有
│x(n)-a│<ε
于是Xn的极限是a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.