当前位置: > 证明方程x^4-4x-2=0在区间[-1,2]内至少有两个实数根...
题目
证明方程x^4-4x-2=0在区间[-1,2]内至少有两个实数根

提问时间:2020-06-18

答案
设:f(x)=x^4-4x-2
f(-1)=1+4-2=3>0
f(0)=0-0-20
所以,x^4-4x-2=0在区间[-1,2]内至少两次通过x轴
即:方程x^4-4x-2=0在区间[-1,2]内至少有两个实数根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.