当前位置: > 在数列an中,a1=1,an+1=3an+3^n(1)设bn=an/3^n-1 证明:数列{bn}是等差数列(2)求数列an的前n项和Sn...
题目
在数列an中,a1=1,an+1=3an+3^n(1)设bn=an/3^n-1 证明:数列{bn}是等差数列(2)求数列an的前n项和Sn
设cn=an/4^n-1,求数列的最大项

提问时间:2020-06-15

答案
⑴因为bn=an/3^n-1,所以bn+1=an+1/3^n,所以bn+1=3an+3^n/3^n,所以bn+1-bn=3an+3^n/3^n-3an/3^n=1,所以bn是以1为公差,首项为1的等差数列,
⑵因为bn为等差数列,所以bn的通项公式为bn=n,又因为bn=an/3^n-1,所以an =n*3^n-1,所以Sn =1*3^0+2*3^1+3*3^2+.+n*3^n-1①
由①*3得到∶3Sn =1*3^1+2*3^2+3*3^3+.+n*3^n②
由①-②得到-2Sn=1+3^1+3^2+3^3+.+(n-1)*3^n-1-n*3^n-1,整理得∶Sn=-3/4*3^n-1+7/4+n/2*3^n,
③因为an =n*3^n-1,cn=an/4^n-1,所以cn=n*3^n-1/4^n-1,整理得cn=n*(3/4)^n-1,所以cn+1=(n+1)*(3/4)^n,所以cn+1/cn=3/4*(n+1)/n3,所以n>3时cn开始递减,所以n=2时取的最大项3/2,死了n多脑细胞,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.