当前位置: > 叙述并证明三角形中位线定理....
题目
叙述并证明三角形中位线定理.

提问时间:2020-06-14

答案
已知:△ABC中,点E、F分别是AB、AC的中点,
求证:EF∥BC且EF=
1
2
BC,
证明:如图,延长EF到D,使FD=EF,
∵点F是AC的中点,
∴AF=CF,
在△AEF和△CDF中,
AF=FC
∠AFE=∠CFD
EF=FD

∴△AEF≌△CDF(SAS),
∴AE=CD,∠D=∠AEF,
∴AB∥CD,
∵点E是AB的中点,
∴AE=BE,
∴BE=CD,
∴BE
.
CD,
∴四边形BCDE是平行四边形,
∴DE∥BC,DE=BC,
∴DE∥BC且DE=
1
2
BC.
作出图形,然后写出已知、求证,延长EF到D,使FD=EF,利用“边角边”证明△AEF和△CDF全等,根据全等三角形对应边相等可得AE=CD,全等三角形对应角相等可得∠D=∠AEF,再求出CE=CD,根据内错角相等,两直线平行判断出AB∥CD,然后判断出四边形BCDE是平行四边形,根据平行四边形的性质可得DE∥BC,DE=BC.

三角形中位线定理.

本题考查了三角形的中位线定理的证明,关键在于作辅助线构造成全等三角形和平行四边形,文字叙述性命题的证明思路和方法需熟练掌握.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.