当前位置: > 已知函数f(x)=-1/3x^3+x^2+ax+b(a,b∈R),若函数f(x)在其图像上任意一点(x0,f(x0))处切线的斜率都小于2a^,求a的取值范围...
题目
已知函数f(x)=-1/3x^3+x^2+ax+b(a,b∈R),若函数f(x)在其图像上任意一点(x0,f(x0))处切线的斜率都小于2a^,求a的取值范围

提问时间:2020-06-13

答案
先求导,得f'(x)=-x^2+2x+a
然后用待定系数法,
f'(x)=-x^2+2x+a<2a^2
f'(x)=-x^2+2x<2a^2-a
设y=-x^2+2x,求出Y的最大值为1
∴ 2a^2-a>1
得 2(a-1)(a+1/2)>0
∴a<-1/2或a>1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.