当前位置: > 证明:x的四次方+y的四次方+z的四次方+w的四次方大于等于4xyzw....
题目
证明:x的四次方+y的四次方+z的四次方+w的四次方大于等于4xyzw.

提问时间:2020-06-13

答案
利用a^2+b^2>=2ab原理:
x^4+y^4>=2x^2y^2;
z^4+w^4>=2z^2w^2;
x^2y^2+z^2w^2>=2xyzw;
联合上面三个式子,有x^4+y^4+z^4+w^4>=4xyzw
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.