当前位置: > 证明:Cn1+2Cn2+3Cn3+.+n Cnn =n 2 n-1...
题目
证明:Cn1+2Cn2+3Cn3+.+n Cnn =n 2 n-1

提问时间:2020-06-13

答案
要知道:kCnk=k*n!/[k!(n-k)!]=n(n-1)...(n-k+1)/(k-1)!=n C(n-1)(k-1)k Cnk=n C(n-1)(k-1)则:Cn1+2Cn2+3Cn3+.+n Cnn=1*Cn1+2Cn2+3Cn3+.+n Cnn =nC(n-1)0+nC(n-1)1+...+nC(n-1)(n-1)=n[C(n-1)0+C(n-1)1+...+C(n-1)(n-...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.