当前位置: > x,y,z为实数,且xy/x+y=1/3,yz/y+z=1/4,xz/x+z=1/5,求xyz/xy+yz+zx的值...
题目
x,y,z为实数,且xy/x+y=1/3,yz/y+z=1/4,xz/x+z=1/5,求xyz/xy+yz+zx的值

提问时间:2020-06-13

答案
将xy/x+y=1/3,yz/y+z=1/4,xz/x+z=1/5的分子分母倒一下,可以得到下面的等式:
(1/x)+(1/y)=3 ①
(1/y)+(1/z)=4 ②
(1/z)+(1/x)=5 ③
将①②③相加,得到(1/x)+(1/y)+(1/z)=6 ④
将④通分就可得到xy+yz+zx/xyz = 6
所以xyz/xy+yz+zx = 1/6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.