当前位置: > 证明:对于任意实数a,b,c,方程(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0总有实数根....
题目
证明:对于任意实数a,b,c,方程(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0总有实数根.

提问时间:2020-06-13

答案
展开方程化简得3x²-2(a+b+c)x+ac+bc+ab=0判别式△=4(a+b+c)²-4*3(ac+bc+ab)=4(a²+b²+c²+2ab+2ac+2bc)-12(ac+bc+ab)=4(a²+b²+c²-ab-ac-bc)=2(2a²+2b²...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.