当前位置: > 用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)...
题目
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
不是左边多什么

提问时间:2020-06-13

答案
给出一个非归纳法的直接证明
左边 = (2n)!/ n!
设 A = 1*3*5*……*(2n-1)
B = 2*4*6*……*(2n)
显然AB = (2n)!
将B每一个提取一个2可以得到B = 2^n * 1*2*3*4*……*n = 2^n * n!
所以(2n)!= AB = 1*3*5*……*(2n-1) * 2^n * n!
也就是(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.