题目
椭圆双曲线中焦点三角形的面积公式大致推导过程
提问时间:2020-06-13
答案
1、椭圆面积:
设椭圆方程为:x^2/a^2+y^2/b^2=1,
F1、F2分别是椭圆的左右焦点,P是椭圆上任意一点,PF1和PF2夹角为θ,
在△PF1F2中,根据余弦定理,
F1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cosθ
|PF1|+|PF2|=2a,
|F1F2}=2c,
4c^2=(PF1+PF2)^2-2|PF1||PF2|-2|PF1|*|PF2|cosθ
4c^2=4a^2-2|PF1||PF2|(1+cosθ),
|PF1||PF2|=2(a^2-c^2)/(1+cosθ)
=2b^2/(1+cosθ),
S△PF1F2=(1/2)|PF1||PF2|sinθ
=b^2sinθ/(1+cosθ)
=b^2*(2sinθ/2cosθ/2)/[2(cosθ/2)^2]
=b^2tan(θ/2).
∴S△PF1F2=b^2tan(θ/2).
2、双曲线面积:
设双曲线方程为:x^2/a^2-y^2/b^2=1,
F1、F2分别是双曲线的左右焦点,P是双曲线上任意一点,PF1和PF2夹角为θ,
在△PF1F2中,根据余弦定理,
F1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cosθ,
||PF1|-|PF2||=2a,
|F1F2}=2c,
4c^2=(PF1-PF2)^2+2|PF1|*|PF2|-2|PF1|*|PF2|cosθ,
4c^2=4a^2+2|PF1|*|PF2|(1-cosθ)
|PF1|*|PF2|(1-cosθ)=2(c^2-a^2)=2b^2,
|PF1|*|PF2|=2b^2/(1-cosθ),
S△PF1F2=(1/2)|PF1||PF2|sinθ
=b^2sinθ/(1-cosθ)
=b^2*(2sinθ/2cosθ/2)/[2(sinθ/2)^2]
=b^2*cos(θ/2)/[sin(θ/2)]
=b^2cot(θ/2).
cos
θθθθ
设椭圆方程为:x^2/a^2+y^2/b^2=1,
F1、F2分别是椭圆的左右焦点,P是椭圆上任意一点,PF1和PF2夹角为θ,
在△PF1F2中,根据余弦定理,
F1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cosθ
|PF1|+|PF2|=2a,
|F1F2}=2c,
4c^2=(PF1+PF2)^2-2|PF1||PF2|-2|PF1|*|PF2|cosθ
4c^2=4a^2-2|PF1||PF2|(1+cosθ),
|PF1||PF2|=2(a^2-c^2)/(1+cosθ)
=2b^2/(1+cosθ),
S△PF1F2=(1/2)|PF1||PF2|sinθ
=b^2sinθ/(1+cosθ)
=b^2*(2sinθ/2cosθ/2)/[2(cosθ/2)^2]
=b^2tan(θ/2).
∴S△PF1F2=b^2tan(θ/2).
2、双曲线面积:
设双曲线方程为:x^2/a^2-y^2/b^2=1,
F1、F2分别是双曲线的左右焦点,P是双曲线上任意一点,PF1和PF2夹角为θ,
在△PF1F2中,根据余弦定理,
F1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cosθ,
||PF1|-|PF2||=2a,
|F1F2}=2c,
4c^2=(PF1-PF2)^2+2|PF1|*|PF2|-2|PF1|*|PF2|cosθ,
4c^2=4a^2+2|PF1|*|PF2|(1-cosθ)
|PF1|*|PF2|(1-cosθ)=2(c^2-a^2)=2b^2,
|PF1|*|PF2|=2b^2/(1-cosθ),
S△PF1F2=(1/2)|PF1||PF2|sinθ
=b^2sinθ/(1-cosθ)
=b^2*(2sinθ/2cosθ/2)/[2(sinθ/2)^2]
=b^2*cos(θ/2)/[sin(θ/2)]
=b^2cot(θ/2).
cos
θθθθ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1如果4x=7y,那么x:y=7:4_(判断对错)
- 2海底两万里中怎么来形容这些人物: ( )的阿龙纳 ( )的尼德兰 ( )的尼摩 ( )的康赛尔
- 31.Do you want to learn how to make a milk shake?Please follow my (i ).
- 4She ___ (know) everything once ___(get) here some day .
- 5铁粉(一种双吸剂)是如何吸收水的?
- 6Lin Tao___(enjiy)this pop song very much.用括号内所给动词的正确形式填空
- 739又24分之23乘(-12) 简便计算
- 8已知(2010-a)(2007-a) 2008,求(2010-a)的平方 +(2007-a)的平方的值
- 9喻可以组什么词
- 10为什么在放大电路中晶体管的集电极电流与发射极电流近似相等?
热门考点
- 1解对数函数不等式.Log2(x的平方-1)<3.
- 2Are you ___ in China?
- 3下面各题,只列综合式或方程,不用解答. ①纺织厂建造厂房投资38.8万元,正好比计划投资节约了1.2万元,节约了百分之几? ②甲、乙、丙三人参加储蓄,甲的存款是乙存款的1.6倍,丙的
- 4Alice is the tallest girl in her class. 改为同义句 Alice is____ than____other girl in her class
- 5要使分式a2−41+1+3a/2a没有意义,则a的值为_.
- 6WOULD什么时候是过去时,什么时候作情态动词?什么时候是虚拟语气?
- 760升水,从10度加热到75度,需要多少度电
- 8英语翻译
- 9小草和大树的比喻句并仿写
- 10麻烦翻译成英语:既然说了,就一定要做到,那是对我自己的承诺…