当前位置: > 椭圆双曲线中焦点三角形的面积公式大致推导过程...
题目
椭圆双曲线中焦点三角形的面积公式大致推导过程

提问时间:2020-06-13

答案
1、椭圆面积:
设椭圆方程为:x^2/a^2+y^2/b^2=1,
F1、F2分别是椭圆的左右焦点,P是椭圆上任意一点,PF1和PF2夹角为θ,
在△PF1F2中,根据余弦定理,
F1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cosθ
|PF1|+|PF2|=2a,
|F1F2}=2c,
4c^2=(PF1+PF2)^2-2|PF1||PF2|-2|PF1|*|PF2|cosθ
4c^2=4a^2-2|PF1||PF2|(1+cosθ),
|PF1||PF2|=2(a^2-c^2)/(1+cosθ)
=2b^2/(1+cosθ),
S△PF1F2=(1/2)|PF1||PF2|sinθ
=b^2sinθ/(1+cosθ)
=b^2*(2sinθ/2cosθ/2)/[2(cosθ/2)^2]
=b^2tan(θ/2).
∴S△PF1F2=b^2tan(θ/2).
2、双曲线面积:
设双曲线方程为:x^2/a^2-y^2/b^2=1,
F1、F2分别是双曲线的左右焦点,P是双曲线上任意一点,PF1和PF2夹角为θ,
在△PF1F2中,根据余弦定理,
F1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cosθ,
||PF1|-|PF2||=2a,
|F1F2}=2c,
4c^2=(PF1-PF2)^2+2|PF1|*|PF2|-2|PF1|*|PF2|cosθ,
4c^2=4a^2+2|PF1|*|PF2|(1-cosθ)
|PF1|*|PF2|(1-cosθ)=2(c^2-a^2)=2b^2,
|PF1|*|PF2|=2b^2/(1-cosθ),
S△PF1F2=(1/2)|PF1||PF2|sinθ
=b^2sinθ/(1-cosθ)
=b^2*(2sinθ/2cosθ/2)/[2(sinθ/2)^2]
=b^2*cos(θ/2)/[sin(θ/2)]
=b^2cot(θ/2).
cos
θθθθ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.