当前位置: > 复数证明题...
题目
复数证明题
设ω=cos2kπ/7 + isin2kπ/7,其中k是不能被7整除的整数.
证明ω^7=1.
由此证明1+ω+ω²+.+ω^6=0

提问时间:2020-06-13

答案
ω=cos2kπ/7 + isin2kπ/7=e^(i*2kπ/7 )
所以ω^7=(e^(i*2kπ/7 ))^7=e^(i*2kπ/7 *7)
=e^(i*2kπ )=cos2kπ + isin2kπ=1
ω^7=1.
所以ω^7-1=0.
所以ω^7-1^7=0
所以:(ω-1)(1+ω+ω²+.+ω^6)=0
所以1+ω+ω²+.+ω^6=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.