题目
如果A,B是关于x的方程lg(3x)*lg(5x)=1的两实数跟,则a*b=
提问时间:2020-06-12
答案
lg(3x)*lg(5x)=(lg3 + lg x)(lg5 + lg x)=(lg3)*(lg5)+(lg3 + lg5)·lg x+(lg x)^2
即(lg3)*(lg5)+(lg3 + lg5)·lg x+(lg x)^2=1;
(lg x)^2 + (lg3 + lg5)·lg x +[(lg3)*(lg5)-1]=0;
因为A,B是方程的两实跟,则有
(lg A)^2 + (lg3 + lg5)·lg A +[(lg3)*(lg5)-1]=0;
(lg B)^2 + (lg3 + lg5)·lg B +[(lg3)*(lg5)-1]=0;
两式相减得:
[(lg A)+(lg B)]·[(lg A)-(lg B)] + (lg3 + lg5)·[(lg A)-(lg B)]=0;
lg A≠lg B,则:
[(lg A)+(lg B)]+ (lg3 + lg5)=0;
即lg(A*B)=-(lg3 + lg5)= -lg(3×5)=-lg15=lg(1/15);
则A*B=1/15.
即(lg3)*(lg5)+(lg3 + lg5)·lg x+(lg x)^2=1;
(lg x)^2 + (lg3 + lg5)·lg x +[(lg3)*(lg5)-1]=0;
因为A,B是方程的两实跟,则有
(lg A)^2 + (lg3 + lg5)·lg A +[(lg3)*(lg5)-1]=0;
(lg B)^2 + (lg3 + lg5)·lg B +[(lg3)*(lg5)-1]=0;
两式相减得:
[(lg A)+(lg B)]·[(lg A)-(lg B)] + (lg3 + lg5)·[(lg A)-(lg B)]=0;
lg A≠lg B,则:
[(lg A)+(lg B)]+ (lg3 + lg5)=0;
即lg(A*B)=-(lg3 + lg5)= -lg(3×5)=-lg15=lg(1/15);
则A*B=1/15.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 11.Shall we go ___(boat) this afternoon?2.Please tell me how ___(get)to the Summer Place.
- 2气压与熔点,凝固点,沸点的关系
- 3除去铜粉中的铁杂质的化学方程式 和主要操作步骤
- 4设圆过双曲线x29−y216=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离为( ) A.4 B.163 C.473 D.5
- 5人乘船从A地到B地,又逆流而上到C地,共用1.5小时,静水速度8KM/h,水流速度2KM/h,AC是2KM,求AB的距离
- 6假如你有100万美元你会干什么 用英语写 内容
- 7填空:the great project will be__ __ __ __of 2015.这项伟大的工程将于2015年完成.
- 8孩子我为什么打你,中的孩子,你那固执的疑问,仿佛爬山虎无数细小的卷须,攀满我的整
- 9【面包车限乘4,+轿车限乘6人+28名同学去游玩,+如果没辆车都坐满,+可以怎样租车
- 10T2噬菌体的主要遗传物质是DNA?
热门考点
- 1六下练习与测试(苏教版的)16,17页(数学)谁知道?
- 2his brother-in-law和niece是什么意思
- 3若斜率为1的直线与椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)相交,且点(0,-1)在椭圆C上,求椭圆C的方程.
- 4植树节!两个班植树相差24棵,1班每人植3棵,2班每人植2棵.1班42人,2班人比1班多,2班有多少人?
- 5求解一道相当怪异的数学题
- 6化简丨3x+1丨+丨2x-1丨
- 7将线段AB延长到C,使BC=1/3AB,延长BC到D,使CD=1/3BC,延长CD到E,使DE=1/3CD,若AE=80厘米,则AB=_厘米.
- 8求六、七年级上海语文全部64首每周一诗题目~
- 9现在进时态和一般现在时态否肯疑分别5句一共30个句子
- 10如何证明氢氧化钠固体已全部变质