当前位置: > 若函数f(x)=x^3-ax^2(a>0)在区间(20/3,+)上是单调函数,则使方程f(x)=1000有整数解的实数a的个数是...
题目
若函数f(x)=x^3-ax^2(a>0)在区间(20/3,+)上是单调函数,则使方程f(x)=1000有整数解的实数a的个数是
麻烦给出具体解题思路

提问时间:2020-06-09

答案
对f(x)求导得f’(x)=3x²+2ax
令f’(x)≥0以求原函数的单调增区间得3x²+2ax≥0,解得x≤0或x≥(2/3)a.
令f’(x)≤0以求原函数的单调减区间得3x²+2ax≤0,解得0≤x≤(2/3)a.
由题意知,区间(20/3,+∞)处于增区间,且(2/3)a≤20/3,结合已知条件a>0,解得00,所以f(x)=1000的解只能在(a,+∞)上.
由x³-ax²=1000,变形得a=x-(1000/x²),而
记g(x)=x-(1000/x²),因为0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.