题目
设f(x)=log1/2(10-ax),其中a为常数,f(3)=-2
(1)a的值
(2)若对于任意的x∈〔3,4〕,不等式f(x)>(1/2)^x+m,求实数m的取值范围
(1)a的值
(2)若对于任意的x∈〔3,4〕,不等式f(x)>(1/2)^x+m,求实数m的取值范围
提问时间:2020-06-08
答案
解:1 .f(3)=-2
带入得: log1/2(10-3a)=-2 解a=2
2.对于任意的x∈〔3,4〕,不等式f(x)>(1/2)^x+m
可转化为f(x)-(1/2)^x>m
设F(x)= f(x)-(1/2)^x= log1/2(10-2x)- (1/2)^x
现在只需求对于任意的x∈〔3,4〕F(x) >m,
我们只需m <F(x)min
因为根据复合函数的单调性可知:10-2x在区间内是减函数, 所以log1/2(10-2x)在区间内是增函数,而(1/2)^x在区间是减函数, -(1/2)^x在区间内是增函数,
所以F(x)在区间内为增函数,即F(x)min= F(3)
即m <F(3)=-17/8
m的取值范围(-∞, -17/8)
带入得: log1/2(10-3a)=-2 解a=2
2.对于任意的x∈〔3,4〕,不等式f(x)>(1/2)^x+m
可转化为f(x)-(1/2)^x>m
设F(x)= f(x)-(1/2)^x= log1/2(10-2x)- (1/2)^x
现在只需求对于任意的x∈〔3,4〕F(x) >m,
我们只需m <F(x)min
因为根据复合函数的单调性可知:10-2x在区间内是减函数, 所以log1/2(10-2x)在区间内是增函数,而(1/2)^x在区间是减函数, -(1/2)^x在区间内是增函数,
所以F(x)在区间内为增函数,即F(x)min= F(3)
即m <F(3)=-17/8
m的取值范围(-∞, -17/8)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1《天净沙 秋思》中表明游子飘泊在外思乡悲情,点明主旨的句子____,_____.
- 2一辆汽车朝山崖匀速行驶,在离山崖700m处鸣笛,汽车沿直线向前行驶40m后,司机刚好听到刚才鸣笛的回声.已知气温是15℃,求汽车行驶的速度是多大?(15℃时,空气中的声速为340m/s).
- 3以土砾凸者为丘的砾什么意思
- 4人教版六年级上册《寒假新时空》p47第一题,第二题.
- 5一元二次方程一次项系数可否为0~
- 6(热胀冷缩)中热的含义是什么
- 7This is the way I clean my desk.
- 8几道数学计算
- 9我要参加一个辩论赛,我方观点是“当今社会竞争比合作更重要”请大家帮忙找下论点,论据之类的,谢拉
- 10一个等边三角形的周长是18厘米,高是4厘米底是?