当前位置: > 过点(3、-1)且与椭圆4x^2+9y^3=36有相同焦点的椭圆?方程是?...
题目
过点(3、-1)且与椭圆4x^2+9y^3=36有相同焦点的椭圆?方程是?

提问时间:2020-06-06

答案
4x^2+9y^2=36,x^2/9+y^2/4=1,则有,a=3,b=2.c=√a^2-b^2=√5.则椭圆的焦点坐标为F1,(-√5,0),F2(√5,0).设,双曲线的方程为:x^2/a^2-y^2/b^2=1,(a>b>0).点,(3,-2)在双曲线上,有9/a^2-4/b^2=1,而,c^2=a^2+b^2,c=√5.5=a...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.