当前位置: > 证明:不论实数k取何值时,关于x的方程2x平方-(3k-11)x+k平方-7k=0总有两个不相同等的实数根...
题目
证明:不论实数k取何值时,关于x的方程2x平方-(3k-11)x+k平方-7k=0总有两个不相同等的实数根
快拉,

提问时间:2020-06-04

答案
给个提示,计算△就是,化简得到关于k的表达式,整理成完全平方加上一个整数就ok
△=(3k-11)^2-4*2*(k^2-7k)
=k^2-10k+121
=(k-5)^2+96
不论实数k取何值,△>0成立,则方程总有两个不相同等的实数根
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.