当前位置: > 关于函数极限的柯西收敛准则的证明问题...
题目
关于函数极限的柯西收敛准则的证明问题
lim(x->+∞)f(x)存在的充要条件是,对任意的ε>0,存在X>0,当x1,x2>X时,恒有|f(x1)-f(x2)|0,存在X,当x>X时,|f(x)-f(X+1)|+∞)f(x)=f(X+1)
如果不能这么证明,那该怎么证明呢?

提问时间:2020-06-04

答案
不行X是根据ε定的
可以认识是ε 的函数X(ε)
所以你这里任意的ε 那么x2=X(ε)+1不是一个定值
所以怎么能取极限呀?
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.