题目
第一问:设等差数列{an}的前n项和为Sn 若a1=2/3,公差为1,Sk^2=(Sk)^2,求k
第二问:Sn=n^2,求an.
第三问:求等差数列{an},使Sk^2=(Sk)^2成立.
第二问:Sn=n^2,求an.
第三问:求等差数列{an},使Sk^2=(Sk)^2成立.
提问时间:2020-06-03
答案
1、由已知可得:an=2/3+(n-1)=(3n-1)/3
故前n项和公式:sn=n(a1+an)/2=n(3n+1)/6
sk^2=k^2(3k^2+1)/6,(sk)^2=k^2(3k+1)^2/36
令sk^2=(sk)^2,得:(3k^2+1)/6=(3k+1)^2/36
得k无解,即不存在k满足上述条件.
2、
n=1时,a1=s1=1
n>=2时,an=sn-s(n-1)=2n-1
这样,an=2n-1.
3、
sn=n(a1+an)/2
这样,sk^2=(sk)^2转换为:
k^2(a1+ak^2)/2=k^2(a1+ak)^2/4,化解为:
2*a1+2*ak^2=(a1+ak)^2
其中,ak=a1+(k-1)d,ak^2=a1+(k^2-1)d
4*a1+2(k^2-1)d=4*a1^2+4*a1(k-1)d+(k-1)^2*d^2
即可得关于k的方程:
(d^2-2)*k^2+[4*a1*d-2*d^2]dk+4*a1^2-4*a1-4*a1*d-d^2=0
若对任意的k都成立,则其各项系数均为0,无解;
如为存在k满足条件,则化为d的方程:
(k-1)^2*d^2+[4*a1(k-1)+2-2*k^2]d+4*a1^2-4*a1=0
若k=1,则4*a1^2-4*a1=0,即a1=0或1;
故前n项和公式:sn=n(a1+an)/2=n(3n+1)/6
sk^2=k^2(3k^2+1)/6,(sk)^2=k^2(3k+1)^2/36
令sk^2=(sk)^2,得:(3k^2+1)/6=(3k+1)^2/36
得k无解,即不存在k满足上述条件.
2、
n=1时,a1=s1=1
n>=2时,an=sn-s(n-1)=2n-1
这样,an=2n-1.
3、
sn=n(a1+an)/2
这样,sk^2=(sk)^2转换为:
k^2(a1+ak^2)/2=k^2(a1+ak)^2/4,化解为:
2*a1+2*ak^2=(a1+ak)^2
其中,ak=a1+(k-1)d,ak^2=a1+(k^2-1)d
4*a1+2(k^2-1)d=4*a1^2+4*a1(k-1)d+(k-1)^2*d^2
即可得关于k的方程:
(d^2-2)*k^2+[4*a1*d-2*d^2]dk+4*a1^2-4*a1-4*a1*d-d^2=0
若对任意的k都成立,则其各项系数均为0,无解;
如为存在k满足条件,则化为d的方程:
(k-1)^2*d^2+[4*a1(k-1)+2-2*k^2]d+4*a1^2-4*a1=0
若k=1,则4*a1^2-4*a1=0,即a1=0或1;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1某水果店有2种等级苹果,一级苹果每a千克卖一元,二级苹果每b千克卖一元(b>a)
- 2浓硝酸与铝反应为什么没有钝化,而是反应生成了二氧化氮?
- 3y=xarcsin根号下x/(1+x)+arctan根号下x-根号2-根号x求导
- 4下列哪项不是蛋白质的主要作用?
- 5我们期望尽快收到你的来信用英文翻译
- 6在平直公路上,自行车与同方向行驶的一辆汽车在平直公路上,
- 7She never stop to make me believe that I could do anything with my life that I wanted if I only tri
- 8善良的魅力作文
- 9关于聚合反应
- 10宋濂和王羲之的求学经历,