当前位置: > 若关于x的方程x^4+ax^3+ax^2+ax+1=0有实数根,则实数a的取值范围为...
题目
若关于x的方程x^4+ax^3+ax^2+ax+1=0有实数根,则实数a的取值范围为
不要用导数

提问时间:2020-06-02

答案
x^4+ax^3+ax^2+ax+1=0,因为x=0不为方程的根,所以两边除以x^2,x^2+ax+a+a/x+1/x^2=0,令x+1/x=t,t^2=x^2+1/x^2+2,所以a(t+1)+t^2-2=0,令t+1=s,as=2-(s-1)^2=2-s^2+2s-1=1+2s-s^2,因为s=x+1/x+1范围是s<=-1或s>=3,不等于零,所以两边同除s得a=1/s-s+2(s<=-1或s>=3),a的范围是(负无穷,-2/3)或(2,正无穷)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.