当前位置: > 求证:不论a为任何实数,关于x的方程2x²+3(a-1)x+a²-4a-7=0必有两个不相等的实数根...
题目
求证:不论a为任何实数,关于x的方程2x²+3(a-1)x+a²-4a-7=0必有两个不相等的实数根

提问时间:2020-06-02

答案
判别式=9(a-1)²-8(a²-4a-7)
=9a²-18a+9-8a²+32a+56
=a²+14a+65
=a²+14a+49+16
=(a+7)²+16
平方大于等于0
所以判别式>=16>0
所以总有不相等的实数根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.