当前位置: > 20n是2001*2000*1999*1998*……*3*2*1的因数,自然数N最大可能是多少?...
题目
20n是2001*2000*1999*1998*……*3*2*1的因数,自然数N最大可能是多少?
20的n次方=(2*2*5)的n次方=2的n次方*2的n次方*5的n次方,其中2001*2000*1999*1998*.*3*2*1中能分解出来的2的个数要远远多于5的个数,所以2001*2000*1998*...*3*2*1中最多能分解出多少个5也就是n的最大值,由此计算的[2001/5]+[2001/25]+[2001/125]+[2001/625]=400+80+16+3=499 [ ]中表示整数部分
由此计算的[2001/5]+[2001/25]+[2001/125]+[2001/625]=400+80+16+3=499

提问时间:2020-06-01

答案
每10个数中有5个2的倍数,2个5的倍数所以20的N次方只要管5的倍数就可以了2000/5=400但是25=5*5,125=5*5*5,625=5^4所以要400+1+2+3=406所以N最大是406[2001/5]+[2001/25]+[2001/125]+[2001/625]2000内含5的400个,在这4...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.