当前位置: > 如图,圆O中,AB为直径,弦CD交AB于P,且OP=PC,证明:弧AD=3弧BC,用圆的概念解题...
题目
如图,圆O中,AB为直径,弦CD交AB于P,且OP=PC,证明:弧AD=3弧BC,用圆的概念解题

提问时间:2020-05-31

答案
证明:要证明弧AD=3弧BC,即证明∠ABD=3∠BDC
∵OP=PC,∴∠DCO=∠BOC,又∵OC=OD, ∴∠DCO=∠CDO, ∴∠CDO=∠BOC
∵OD=OB∴∠DBO=∠OBD=∠ABD,
∠BDO=∠CDO+∠BDC, 又∵∠BDC=1/2∠BOC, ∴∠CDO=2∠BDC
因此∠BDO=3∠BDC,即∠ABD=3∠BDC,因此对应的弧AD=3弧BC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.