当前位置: > 证明有理数集是零测集...
题目
证明有理数集是零测集

提问时间:2020-05-29

答案
有理数集是可数集,可数集一定是零测集(Lebesgue测度下).
设可数集A = {a1,a2,a3,...}
任取c > 0,考虑可数个开区间:(a1-c/4,a1+c/4),(a2-c/8,a2+c/8),(a3-c/16,a3+c/16),...
区间总长为c,并构成A的覆盖.于是A的外测度 ≤ c.
由c的任意性,A是零测集.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.