当前位置: > 已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有两等根. (1)求f(x)的解析式. (2)求f(x)在[0,t]上的最大值....
题目
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有两等根.
(1)求f(x)的解析式.
(2)求f(x)在[0,t]上的最大值.

提问时间:2020-05-28

答案
(1)∵方程f(x)=2x有两等根,ax2+(b-2)x=0有两等根,∴△=(b-2)2=0,解得b=2,∵f(x-1)=f(3-x),∴x-1+3-x2=1,∴x=1是函数的对称轴,又此函数图象的对称轴是直线x=-b2a,∴-b2a=1,∴a=-1,故f(x)=-x2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.