当前位置: > 证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解(精确到0.1)....
题目
证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解(精确到0.1).

提问时间:2020-05-28

答案
证明:设函数使f(x)=2x+3x-6.∵f(1)=-1<0,f(2)=4>0
又∵f(x)是增函数,所以函数f(x)=2x+3x-6在区间[1,2]有唯一的零点,
则方程6-3x=2x在区间[1,2]有唯一一个实数解.设该解为x0,则x0∈[1,2]
取x1=1.5,f(1.5)=0.33>0,f(1)f(1.5)<0.∴x0∈(1,1.5)
取x2=1.25,f(1.25)=0.128>0,f(1)f(1.25)<0.
∴x0∈(1,1.25)
取x3=1.125,f(1.125)=-0.44<0,
f(1.125)f(1.25)<0.∴x0∈(1.125,1.25)
取x4=1.1875,f(1.1875)=-0.16<0,f(1.1875)f(1.25)<0.
∴x0∈(1.1875,1.25)∵|1.25-1.1875|=0.0625<0.1∵可取x0=1.2
则方程的实数解为x0=1.2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.