当前位置: > 已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1...
题目
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1

提问时间:2020-05-26

答案
当n=1时|X2-X1|=1/6成立 当n≥2时易知0<Xn-1<1所以1+Xn-1<2所以Xn=1/(1+Xn-1)>1/2 又有|Xn+1-Xn|=|1/(1+Xn)-1/(1+Xn-1)|=|Xn-Xn-1|/[(1+Xn)*(1+Xn-1)]又有注意到(1+Xn)*(1+Xn-1)=[1+1/(1+Xn-1)]...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.