当前位置: > f(x)=ax^2/(2x+b)的图像在点(2,f(2))处的切线方程为y=2...
题目
f(x)=ax^2/(2x+b)的图像在点(2,f(2))处的切线方程为y=2
1、求a、b的值以及f(x)的单调区间
2、是否存在平行于直线y=(1/2)x且曲线y=f(x)没有公共点的直线?证明结论
3、设数列{an}满足a1=λ(λ ≠1),若{an}是单调函数,求实数λ的取值范围

提问时间:2020-05-23

答案
1.切线方程为y=2,说明f(2)=2,又切线方程斜率为0,得f'(2)=0,f'(x)=(2ax^2+2abx)/(2x+b)^2=0,最后解得a=1,b=-2,f(x)=x^2/(2x-2),f'(x)=(2x^2-4x)/(2x-6)^2,令f'(x)=0,得到x=0,2,所以当x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.