当前位置: > 若f(t)是连续函数且为奇函数,证明他的0到x的积分是偶函数....
题目
若f(t)是连续函数且为奇函数,证明他的0到x的积分是偶函数.
f(x)=f(-x)为偶函数 那么是不是应该证明原函数F(x)=F(-x)?为什么F(x)+F(-x)=∫(-x,x)f(t)dt=0,所以F(x)=∫(0,x)f(t)dt是偶函数?

提问时间:2020-05-20

答案
声明:∫(a,b)f(x)dx=F(x)|(a,b)表示f(x)从a到b的定积分,F(x)为原函数之一设F(x)=∫(0,x)f(t)dt,F(x)-F(-x)=∫(0,x)f(t)dt-∫(0,-x)f(t)d(t)(做替换s=-t,积分限相应地跟着变)=∫(0,x)f(t)dt-∫(0,x)f(-s)d(-s)=∫(0,...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.