当前位置: > 证明55的55次方+9能被8整除...
题目
证明55的55次方+9能被8整除

提问时间:2020-05-09

答案
55^55+9
=5^55+11^55+9
因为能被8整除的数后三位必能被8整除
又因为5的n次方(n>2)的后三位,且n为奇数时尾数必为125(自己验证)
又因为125*11=1375
所以(375+9)/8=48
所以55^55+9必能被8整除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.