当前位置: > 设数列{Xn}有界,又lim(n->正无穷)Yn=0,证明:lim(n->正无穷)XnYn=0.定义法...
题目
设数列{Xn}有界,又lim(n->正无穷)Yn=0,证明:lim(n->正无穷)XnYn=0.定义法

提问时间:2020-05-08

答案
如果存在M>0,对任意的n都有:|xn|≤M,称数列{xn}有界.
所以lim(n->正无穷) Xn=M
故lim(n->正无穷)XnYn
=[lim(n->正无穷)Xn]*[lim(n->正无穷)Yn]
=M*0
=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.