当前位置: > 已知双曲线与椭圆x^2/36+y^2/49=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为3/7,求双曲线的方程....
题目
已知双曲线与椭圆x^2/36+y^2/49=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为3/7,求双曲线的方程.

提问时间:2020-05-08

答案
由方程知:a1=7,b1=6,c1=根号(a1^2-b1^2)=根号13
椭圆离心率e1=c1/a1
双曲线离心率e2=c2/a2
由题意知:e1/e2=3/7 c2=c1=根号13 所以求得:e2=(根号13)/3
解得:a2=3 b2=根号(c2^2-a2^2)=2
所以方程为:x^2/9-y^2/4=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.