当前位置: > 函数:y=arctanx,求函数y的n阶导数在x=0时的值...
题目
函数:y=arctanx,求函数y的n阶导数在x=0时的值

提问时间:2020-05-07

答案
先求一次导数,有f'(x)=1/(1+x*2),就是f'(x)(1+x*2)=1,然后两边取n次导数,左边用莱布尼茨公式,有(1+x*2)的三次及三次以上的导数都是零了,所以就可以写成f(n+1)(x)(1+x*2)+nf(n)(x)2x+n(n-1)f(n-1)(x)=0,把0带入上面的式子,就有f(n+1)(0)=-n(n-1)f(n-1)(0),然后求出f(0)=0,f'(0)=1,f"(0)=0,然后递推,结果就有了.这里的莱布尼兹公式不能忘了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.