当前位置:高中试题 > 物理试题 > 洛伦兹力 > (18分)有人设计了一种带电颗粒的速率分选装置,其原理如题24图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁...
题目
题型:不详难度:来源:
(18分)有人设计了一种带电颗粒的速率分选装置,其原理如题24图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场。一束比荷(电荷量与质量之比)均为的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O’O进入两金属板之间,其中速率为v0的颗粒刚好从Q点处离开磁场,然后做匀速直线运动到达收集板。重力加速度为g,PQ=3d,NQ=2d,收集板与NQ的距离为l,不计颗粒间相互作用。求

(1)电场强度E的大小;
(2)磁感应强度B的大小;
(3)速率为λv0(λ>1)的颗粒打在收集板上的位置到O点的距离。
答案
(1)kg(2)(3)d(5λ-)+
解析
(1)设带电颗粒的电荷量为q,质量为m,
有qE=mg,
将q/m=1/k代入得,E=kg。
(2)如图,

有qv0B=m
R2=(3d)2+(R-d)2
联立解得B=
(3)如图所示,有qλv0B=m
tanθ=
y1=R1-,y2="l" tanθ。
y= y1+ y2
联立解得y=d(5λ-)+
核心考点
试题【(18分)有人设计了一种带电颗粒的速率分选装置,其原理如题24图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁】;主要考察你对洛伦兹力等知识点的理解。[详细]
举一反三
如图所示,在一平面直角坐标系所确定的平面内存在着两个匀强磁场区域,以一、三象限角平分线为界,分界线为MNMN上方区域存在匀强磁场B1,垂直纸面向里,下方区城存在匀强磁场B2,也垂直纸面向里,且有B2 =2B1=0.2T,x正半轴与ON之间的区域没有磁场。在边界线MN上有坐标为(2、2)的一粒子发射源S,不断向Y轴负方向发射各种速率的带电粒子.所有粒子带电量均为-q,质量均为m(重力不计),其荷质比为c/kg。试问:

(1)  若S发射了两颗粒子,它们的速度分别为m/s和m/s,结果,经过一段时间,两颗粒子先后经过分界线ON上的点PP未画出),求SP的距离。
(2)  若S发射了一速度为m/s的带电粒子,经过一段时间,其第一次经过分界线MO上的点QQ未画出),求Q点的坐标。
(3)  若S发射了一速度为m/s的带电粒子,求其从发出到第三次经过x轴所花费的时间。
题型:不详难度:| 查看答案
(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B的匀强磁场,在此区域内,沿水平面固定一半径为r的圆环形光滑细玻璃管,环心0在区域中心。一质量为m、带电量为q(q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B随时间t的变化关系如图乙所示,其中。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。

(1)在t=0到t=T0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小
(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。试求t=T0到t=1.5T0这段时间内:
①细管内涡旋电场的场强大小E;
②电场力对小球做的功W。
题型:不详难度:| 查看答案
如图所示,在一底边长为2L,θ=45°的等腰三角形区域内(O为底边中点)有垂直纸面向外的匀强磁场. 现有一质量为m,电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从O点垂直于AB进入磁场,不计重力与空气阻力的影响.

(1)粒子经电场加速射入磁场时的速度?
(2)磁感应强度B为多少时,粒子能以最大的圆周半径偏转后打到OA板?
(3)增大B,可延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与AB板碰撞的作用时间,设粒子与AB板碰撞前后,电量保持不变并以相同的速率反弹)
题型:不详难度:| 查看答案
如图所示,一束电子从静止开始经U′= 5000V的电场加速后,从水平放置的一对平行金属板正中央水平射入偏转电场中,若金属极板长L = 0.05m,两极板间距d = 0.02m,试求:

①两板间至少要加U才能使电子恰不飞出电场?
②在上述电压下电子到达极板时的动能为多少电子伏?
题型:不详难度:| 查看答案
如图所示,在半径为a的圆形区域内充满磁感应强度大小为的均匀磁场,其方向垂直于纸面向里.在圆形区域平面内固定放置一绝缘材料制成的边长为L=1.2a的刚性等边三角形框架,其中心位于圆形区域的圆心.边上点(DS=L/2)处有一发射带电粒子源,发射粒子的方向皆在图示平面内且垂直于边,发射粒子的电量皆为(>0),质量皆为,但速度有各种不同的数值.若这些粒子与三角形框架的碰撞均无机械能损失,并要求每一次碰撞时速度方向垂直于被碰的边.试问:(1)若发射的粒子速度垂直于边向上,这些粒子中回到点所用的最短时间是多少?(2)若发射的粒子速度垂直于边向下,带电粒子速度的大小取哪些数值时可使点发出的粒子最终又回到点?这些粒子中,回到点所用的最短时间是多少?(不计粒子的重力和粒子间的相互作用)

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.