题目
题型:不详难度:来源:
(1)物体与斜面间的动摩擦因数μ;
(2)从静止开始3s内物体的位移和路程.
答案
1 |
2 |
代入数据4=
1 |
2 |
解得a1=2 m/s2
根据牛顿第二定律有:F-μmgcos37°-mgsin37°=ma1
μ=
F-mgsin37°-ma1 |
mgcos37° |
50-30-10 |
40 |
解得:μ=0.25
(2)在F被撤消后,物体还要继续向上运动,且是做匀减速运动,当速度为零位移达到最大值.设这过程的加速度为a2,撤消力F时的速度为v,匀减速运动的时间为t2,则有:
mgsin37°+μmgcos37°=ma2
解得:a2=8m/s2
2s末的速度v=a1t=4 m/s
又v=a2t2
解得t2=0.5s
匀减速到最高点的位移运用反演法,为S2=
1 |
2 |
之后物体沿斜面向下做匀加速直线运动,
对物体受力分析有:mgsin37°-μmgcos37°=ma3解得:a3=4 m/s2
再经过t3=0.5 s 发生位移为S3=
1 |
2 |
所以前3s位移为S1+S2-S3=4.5m 方向沿斜面向上
路程为S1+S2+S3=5.5m
答:(1)物体与斜面间的动摩擦因数μ为0.25;
(2)从静止开始3s内物体的位移为4.5m,方向沿斜面向上,路程为5.5m.
核心考点
试题【如图所示为一足够长斜面,其倾角为θ=37°,一质量m=5kg物体,在斜面底部受到一个沿斜面向上的F=50N的力作用由静止开始运动,2s末撤去力F,物体在前2s内】;主要考察你对匀变速直线运动等知识点的理解。[详细]
举一反三