当前位置:高中试题 > 数学试题 > 函数的奇偶性 > 【题文】已知函数是定义在上的奇函数,且,若,,则有.(1)判断的单调性,并加以证明;(2)解不等式;(3)若对所有,恒成立,求实数的取值范围....
题目
题型:难度:来源:
【题文】已知函数是定义在上的奇函数,且,若,则有.
(1)判断的单调性,并加以证明;
(2)解不等式
(3)若对所有,恒成立,求实数的取值范围.
答案
【答案】(1)增函数,证明过程见解析,(2),(3)
解析
【解析】
试题分析:(1)根据单调函数的定义,先取值:任取,且,然后根据已知条件结合赋值法得,再根据奇函数的定义得上单增。(2)根据(1)中的单调性,去掉,要注意函数的定义域,可得,解该不等式求得的范围。(3)这是一个不等式恒成立问题,结合(1)可知该不等式可转化为对任意恒成立,然后构造函数,这是关于的一次函数,只需保证即可。
试题解析:(1)证:任取,且,则 由题意 
因为为奇函数,所以 
所以,即,所以上单增      4分
(2)由题意得, 所以,故该不等式的解集为    8分
(3)由上单增,,由题意,,
对任意恒成立,令, 
, 所以 
综上所述,      12分    
考点:(1)单调函数的定义、奇函数的定义,(2)利用函数的单调性求范围,(3)构造函数解决一元二次不等式恒成立问题。 
核心考点
试题【【题文】已知函数是定义在上的奇函数,且,若,,则有.(1)判断的单调性,并加以证明;(2)解不等式;(3)若对所有,恒成立,求实数的取值范围.】;主要考察你对函数的奇偶性等知识点的理解。[详细]
举一反三
【题文】已知=是奇函数,则实数的值是           
题型:难度:| 查看答案
【题文】下列函数在定义域内为奇函数的是(    )
A.B.C.D.
题型:难度:| 查看答案
【题文】定义行列式运算,将函数的图象向左平移t(t>0)个单位,所得图象对应的函数为奇函数,则t的最小值为______.
题型:难度:| 查看答案
【题文】已知是定义在上的偶函数,且在区间上是增函数,设,则的大小关系是(    )
A.B.C.D.
题型:难度:| 查看答案
【题文】设是定义在上的奇函数,且,当时,有恒成立,则不等式的解集为 (    )
A.B.C.D.
题型:难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.