当前位置:高中试题 > 数学试题 > 函数的相关概念 > (14分)已知f(x)是定义在[—1,1]上的奇函数,且f (1)=1,若m,n∈[—1,1],m+n≠0时有(1)判断f (x)在[—1,1]上的单调性,并证...
题目
题型:不详难度:来源:
(14分)已知f(x)是定义在[—1,1]上的奇函数,且f (1)=1,若m,n∈[—
1,1],m+n≠0时有
(1)判断f (x)在[—1,1]上的单调性,并证明你的结论;
(2)解不等式:
(3)若f (x)≤对所有x∈[—1,1],∈[—1,1]恒成立,求实数t的取值范围.
答案
解:(1)任取—1≤x1<x2≤1,则
f (x1)—f (x2)=" f" (x1)+f (-x2)=
∵—1≤x1<x2≤1,∴x1+(-x2)≠0,
由已知>0,又x1-x2<0,
∴f (x1)—f (x2)<0,即f (x)在[—1,1]上为增函数.
(2) ∵f (x)在[—1,1]上为增函数,故有

(3)由(1)可知:f(x)在[—1,1]上是增函数,且f (1)=1,故对x∈[—l,1],恒有f(x)≤1.
所以要使f(x)≤,对所有x∈[—1,1], ∈[—1,1]恒成立,
即要≥1成立,故≥0成立.
记g()= ∈[—1,1],g()≥0恒成立,只需g()在[—1,1]上的最小值大于等于零.

解得:t≤—2或t=0.
解析

核心考点
试题【(14分)已知f(x)是定义在[—1,1]上的奇函数,且f (1)=1,若m,n∈[—1,1],m+n≠0时有(1)判断f (x)在[—1,1]上的单调性,并证】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
                             (   )
A.0 B.1C.2D.3

题型:不详难度:| 查看答案
已知映射,其中,对应法则,对于
实数在集合A中存在两个不同的原像,则的取值范围是(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本小题13分)某饮料生产企业为了占有更多的市场份额,拟在2010年度进行
一系列促销活动,经过市场调查和测算,饮料的年销售量x万件与年促销费t万元间满足
。已知2010年生产饮料的设备折旧,维修等固定费用为3 万元,每生产1万件
饮料需再投入32万元的生产费用,若将每件饮料的售价定为:其生产成本的150%与平均
每件促销费的一半之和,则该年生产的饮料正好能销售完。
(1)将2010年的利润y(万元)表示为促销费t(万元)的函数;
(2)该企业2010年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)
题型:不详难度:| 查看答案
(本小题14分)已知函数的图像与函数的图像关于点
对称
(1)求函数的解析式;
(2)若在区间上的值不小于6,求实数a的取值范围.
题型:不详难度:| 查看答案
函数的单调递增区间是_________________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.