当前位置:高中试题 > 数学试题 > 函数的相关概念 > 已知函数,(其中).(Ⅰ)求函数的极值;(Ⅱ)若函数在区间内有两个零点,求正实数a的取值范围;(Ⅲ)求证:当时,.(说明:e是自然对数的底数,e=2.71828...
题目
题型:不详难度:来源:
已知函数(其中).
(Ⅰ)求函数的极值;
(Ⅱ)若函数在区间内有两个零点,求正实数a的取值范围;(Ⅲ)求证:当时,.(说明:e是自然对数的底数,e=2.71828…)
答案
(Ⅰ)极小值为,无极大值(Ⅱ)(Ⅲ)问题等价于.由(Ⅰ)知的最小值为.设上单调递增,在上单调递减.∴
=,∴,∴,故当时,
解析

试题分析:(Ⅰ)
),
,得,由,得
故函数上单调递减,在上单调递增,
所以函数的极小值为,无极大值.  4分
(Ⅱ)函数

,∵,解得,或(舍去),
时,上单调递减;
时,上单调递增.
函数在区间内有两个零点,
只需
故实数a的取值范围是.   9分
(Ⅲ)问题等价于.由(Ⅰ)知的最小值为
上单调递增,在上单调递减.

=
,∴,故当时,.  14分
点评:求函数极值最值都需要首先找到函数的单调区间,第二问将函数存在零点转化为最值边界值的范围,第三问将不等式恒成立问题转化为求函数最值问题,这两种转化是函数综合题中经常考到的
核心考点
试题【已知函数,(其中).(Ⅰ)求函数的极值;(Ⅱ)若函数在区间内有两个零点,求正实数a的取值范围;(Ⅲ)求证:当时,.(说明:e是自然对数的底数,e=2.71828】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
已知定义在上的函数,对任意的,都有成立,若函数的图象关于直线对称,则
A.B.C.D.

题型:不详难度:| 查看答案
制作一个面积为,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济(够用,又耗材最少)的是
A.B.C.D.

题型:不详难度:| 查看答案
定义域为R的函数满足,当时,则当时,函数恒成立,则实数的取值范围为(   )
A.B.C.D.

题型:不详难度:| 查看答案
对于函数,下列说法正确的是       .
(1)函数的图像关于直线对称;
(2)的图像关于直线对称;
(3)两函数的图像一共有10个交点;
(4)两函数图像的所有交点的横坐标之和等于30;
(5)两函数图像的所有交点的横坐标之和等于24.
题型:不详难度:| 查看答案
已知函数是R上的奇函数,若对于,都有
时,的值为(  )
A.B.C.1D.2

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.