当前位置:高中试题 > 数学试题 > 函数的相关概念 > 已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.①求a的...
题目
题型:不详难度:来源:
已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.
答案
;②;③见解析.
解析

试题分析:①由幂函数的定义和性质可以知道的取值集合,由图像关于原点对称的函数是奇函数可以确定的值,将的值代入的解析式后,根据函数的单调性与导函数的关系以及不等式的恒成立问题的解法就可以知道满足的不等式,就可以解得的值;②先由已知条件求出的解析式,然后得出的关系,由函数构造的方法可以求得的解析式,代入即可,再由数列求和公式求得的值;③先求出的解析式,再由相减的方法来判断两个式子的大小,最后减得的结果和0比较即可,注意分类讨论的思想.
试题解析:①幂函数的图像与轴,轴无交点,则有,解得
,∴,
又幂函数的图像关于原点对称,则有幂函数是奇函数,
时,是偶函数,不合题意,舍去,
时,是奇函数,∴,
,求导得,
又∵上是增函数,∴上恒成立,
解得,
又∵上为减函数,
上恒成立,
解得,
综上知;                                   ..3分
②∵,
,
是首项为公比的等比数列,
解得,
,
,
;           .6分
③∵,
时,,
时,




,
.                             10分
核心考点
试题【已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.①求a的】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
对于函数(   )
A.B.C.D.

题型:不详难度:| 查看答案
设函数,则函数的值域为(   )
A.B.
C.D.

题型:不详难度:| 查看答案
符号表示不超过的最大整数,例如,,定义函数,给出下列四个命题:(1)函数的定义域为,值域为;(2)方程有无数个解;(3)函数是周期函数;(4)函数是增函数.其中正确命题的个数有(   )
A.1B.2 C.3D.4

题型:不详难度:| 查看答案
若定义在上的函数同时满足:①;②;③若,且,则成立.则称函数为“梦函数”.
(1)试验证在区间上是否为“梦函数”;
(2)若函数为“梦函数”,求的最值.
题型:不详难度:| 查看答案
已知二次函数与两坐标轴分别交于不同的三点A、B、C.
(1)求实数t的取值范围;
(2)当时,求经过A、B、C三点的圆F的方程;
(3)过原点作两条相互垂直的直线分别交圆F于M、N、P、Q四点,求四边形的面积的最大值。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.