当前位置:高中试题 > 数学试题 > 函数的相关概念 > 定义在实数集上的函数,如果存在函数(为常数),使得对一切实数都成立,那么称为函数的一个承托函数.给出如下四个结论:①对于给定的函数,其承托函数可能不存在,也可能...
题目
题型:不详难度:来源:
定义在实数集上的函数,如果存在函数为常数),使得对一切实数都成立,那么称为函数的一个承托函数.给出如下四个结论:
①对于给定的函数,其承托函数可能不存在,也可能有无数个;
②定义域和值域都是的函数不存在承托函数;
为函数的一个承托函数;
为函数的一个承托函数.
其中所有正确结论的序号是____________________.
答案
①③
解析

试题分析:由题意可知,如果存在函数(为常数),使得对一切实数都成立,那么称为函数的一个承托函数,那么对于来说,不存在承托函数,当,则此时有无数个承托函数;②定义域和值域都是的函数不存在承托函数,因为一个函数本身就是自己的承托函数.故错误;对于③因为恒成立,则可知为函数的一个承托函数;成立;对于④如果为函数的一个承托函数.则必然有并非对任意实数都成立,只有当时成立,因此错误;综上可知正确的序号为①③.
核心考点
试题【定义在实数集上的函数,如果存在函数(为常数),使得对一切实数都成立,那么称为函数的一个承托函数.给出如下四个结论:①对于给定的函数,其承托函数可能不存在,也可能】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
已知函数,若,则        .
题型:不详难度:| 查看答案
是实数,函数).
(1)求证:函数不是奇函数;
(2)当时,求满足的取值范围;
(3)求函数的值域(用表示).
题型:不详难度:| 查看答案
如图,在△ABC中,∠C=90°,CA=CB=1,为△ABC内一点,过点P分别引三边的平行线,与各边围成以P为顶点的三个三角形(图中阴影部分),则这三个三角形的面积和的最小值为(  )
A.B.
C.D.

题型:不详难度:| 查看答案
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.

(1)求关于的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?
题型:不详难度:| 查看答案
设函数.
(1)解方程:
(2)令,求证:

(3)若是实数集上的奇函数,且
对任意实数恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.