当前位置:高中试题 > 数学试题 > 函数的相关概念 > 已知f是有序数对集合上的一个映射,正整数数对在映射f下的象为实数z,记作. 对于任意的正整数,映射由下表给出: 则__________,使不等式成立的x的集合是...
题目
题型:不详难度:来源:
已知f是有序数对集合上的一个映射,正整数数对在映射f下的象为实数z,记作. 对于任意的正整数,映射由下表给出:








 
__________,使不等式成立的x的集合是_____________.
答案
 ,
解析

试题分析:试题分析:根据映射对应法则可知,当时,,当时,,当时,,因此当时,成立.
核心考点
试题【已知f是有序数对集合上的一个映射,正整数数对在映射f下的象为实数z,记作. 对于任意的正整数,映射由下表给出: 则__________,使不等式成立的x的集合是】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
为平面直角坐标系中的点集,从中的任意一点轴、轴的垂线,垂足分别为,记点的横坐标的最大值与最小值之差为,点的纵坐标的最大值与最小值之差为.如果是边长为1的正方形,那么的取值范围是(    )
A.B.C.D.

题型:不详难度:| 查看答案
对任意正整数表示不大于a的最大整数,则_________.
题型:不详难度:| 查看答案
某地一渔场的水质受到了污染.渔场的工作人员对水质检测后,决定往水中投放一种药剂来净化水质. 已知每投放质量为个单位的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足y=mf(x),其中,当药剂在水中释放的浓度不低于6(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化.
(1)如果投放的药剂质量为m=6,试问渔场的水质达到有效净化一共可持续几天?
(2)如果投放的药剂质量为m,为了使在8天(从投放药剂算起包括第8天)之内的渔场的水质达到最佳净化,试确定应该投放的药剂质量m的取值范围.
题型:不详难度:| 查看答案
已知,映射.对于直线上任意一点,若,我们就称为直线的“相关映射”,称为映射的“相关直线”.又知
,则映射的“相关直线”有多少条(   )
A.B.C.D.无数

题型:不详难度:| 查看答案
已知函数常数)满足.
(1)求出的值,并就常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值;
(3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.