当前位置:高中试题 > 数学试题 > 圆锥曲线性质探讨 > 如图,在圆内接梯形ABCD中,AB∥DC.过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为    ....
题目
题型:不详难度:来源:
如图,在圆内接梯形ABCD中,AB∥DC.过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为    .

答案

解析
因为AE是圆的切线,

AB∥DC,
所以BC=AD=AB=5,
又BE=4,
则EA2=EB×EC=4×9=36,
EA=6.
由∠CDB=∠CAB=∠ACB=∠BAE,
即∠CDB=∠BAE,∠DCB=∠ABE,
得△DCB∽△ABE,则=,
则BD==.
核心考点
试题【如图,在圆内接梯形ABCD中,AB∥DC.过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为    .】;主要考察你对圆锥曲线性质探讨等知识点的理解。[详细]
举一反三
如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=    cm.

题型:不详难度:| 查看答案
如图所示,AB为☉O直径,直线CD与☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
题型:不详难度:| 查看答案
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B、E、F、C四点共圆.

(1)证明:CA是△ABC外接圆的直径;
(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.
题型:不详难度:| 查看答案
如图所示,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.

(1)证明:C,B,D,E四点共圆;
(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
题型:不详难度:| 查看答案
如图所示,AB是☉O的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且BD·BE=BA·BF,求证:

(1)EF⊥FB;
(2)∠DFB+∠DBC=90°.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.