当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 将图1中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图2,通过计算发现“长方形”的面积为8×21=168,显然有问题.请认真观察...
题目
题型:不详难度:来源:
将图1中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图2,通过计算发现“长方形”的面积为8×21=168,显然有问题.请认真观察,寻找出的根源是______.(注:只要表达出类似意思就可以得分.)
答案
若以BC所在直线为x轴,BA所在直线为y轴建立平面直角坐标系,则kAC=-
8
21

而A(0,8),F(8,5),∴kAF=
8-5
0-8
=-
3
8
≠-
8
21

说明A,F,C,G不共线,图形由重叠的情况.
∴原正方形与拼成的矩形的面积不等.
故答案为A、F、G、C并不在一条直线上.
核心考点
试题【将图1中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图2,通过计算发现“长方形”的面积为8×21=168,显然有问题.请认真观察】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
已知正三角形内切圆的半径r与它的高h的关系是:r=
1
3
h,把这个结论推广到空间正四面体,则正四面体内切球的半径r与正四面体高h的关系是______.
题型:不详难度:| 查看答案
某动点在平面直角坐标系第一象限的整点上运动(含第一象限x,y轴上的整点),其运动规律为(m,n)→(m+1,n+1)或(m,n)→(m+1,n-1).若该动点从原点出发,经过6步运动到(6,2)点,则有______种不同的运动轨迹.
题型:不详难度:| 查看答案
已知命题:平面上一矩形ABCD的对角线AC与边AB、AD所成的角分别为α、β(如图1),则cos2α+cos2β=1.用类比的方法,把它推广到空间长方体中,试写出相应的一个真命题并证明.
题型:不详难度:| 查看答案
5男6女共11个小孩做如下游戏:先让4个小孩(不全是男孩)等距离站在一个圆周的4个位置上,如果相邻两个小孩同为男孩或同为女孩,则在他(她)们中间站进一个男孩,否则站进一个女孩,然后让原来的4个小孩暂时退出,即算一次活动.这种活动按上述规则继续进行,直至圆周上所站的4个小孩都是男孩为止.这样的活动最多可以进行(  )
A.2次B.3次C.4次D.5次
题型:不详难度:| 查看答案
由平面几何知识,我们知道在Rt△ABC中,若两条直线边的长分别为a,b,则△ABC的外接圆半径R=


a2+b2
2
,如果我们将这一结论拓展到空间中去,类比可得:在三棱锥中,若三条侧棱两两垂直,且它们的长分别为a,b,c,则条棱锥的外接球半径R=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.